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Abstract:  The dynamic tire forces are the important factor influencing weigh-in-motion of vehicle. This 

paper presents a method to separate the dynamic tire forces contained in axle-weight signal. On the basis of 

analyzing the characteristic of axle-weight signal, the model of axle-weight signal and the objective function are 

constructed. After introducing the principle of particle swarm optimization (PSO), an improved PSO is 

employed to estimate the unknown parameters of the objective function. According to the obtained estimates of 

parameters, the dynamic tire forces contained in axle-weight signal are reconstructed. Subtract the reconstructed 

dynamic tire forces from the axle-weight signal, and get the estimate of axle weight of moving vehicle. 

Simulation and field experiments are conducted to demonstrate the performance of the proposed method. 
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I. Introduction 
Weigh-in-motion (WIM) can be defined as scaling the axle weight and total weight of a moving vehicle. 

Compared with traditional static measurement, WIM has high measurement efficiency and little influence on 

traffic. With the rapid development of traffic and transportation, the increasing phenomenon of overload in 

freight transportation has become a serious problem. The overload vehicles have caused the various harms
 [1]

, 

such as reducing the lifespan of road and bridge, causing the traffic accident and losing a considerable amount 

of road toll. Accordingly, WIM technology is widely employed in traffic management, weight enforcement, and 

road toll. 

It is important to process the WIM signal for improving the performance of the WIM systems. Infinite 

impulse response filter and average filter are often used in WIM signal process. System identification method
 [2]

 

models the weighing system as a second-order system, and deduces an auto-regressive (AR) model with 

unknown parameters, and use the least square method to get the estimations of unknown parameters. The 

estimation of axle weight is calculated with the estimations of the unknown parameters. Empirical mode 

decomposition
 [3]

 (EMD) is a good method for measuring the axle weight in theory, which can decompose the 

axle weight signal into a collection of intrinsic mode functions (IMFs, which denote the dynamic components 

contained in the axle weight signal) and a residual (which corresponds to the signal of static axle weight). The 

average value of the residual is regarded as the estimation of real axle weight. In practice, end effect and 

pseudo-IMF influence the performance of EMD method. When the decomposed signal is short and has few 

extreme points, end effect will result in serious distortion of IMF. Zhou et al.
 [4]

 present an AR model prediction 

method to extend signal and correlation coefficient method to judge pseudo-IMF, and then use the improved 

EMD to decompose the axle weight signal. Neural network method
 [5]

 uses the strong nonlinear mapping 

performance to establish the mapping network between the axle weight signal and the real axle weight. The 

connection weights between neurons can be obtained by the sample training. The performance of neural network 

mainly depends on the sample number and sample types. It is difficult and costly to get enough axle weight 

signal samples in practice. The displacement integral method is first proposed by
 
H.Yoshikawa

 [6]
, which 

accumulates the integrals of the axle weight signal along the time direction. This method essentially averages 

axle weight signal. When the axle weight signal is short and contains the incomplete-cycle dynamic components, 

displacement integral method will fail to work well. 

There exist various factors
 [7]

 influencing the weighing accuracy and efficiency. The dynamic tire forces 

contained in the axle weight signal are the main factor. In this paper, the method based on particle swarm 

optimization 
[8]

 (PSO) is presented to separate the dynamic tire forces. In the following sections, the model of 

axle weight signal is constructed and the characteristic of the dynamic tire forces is analyzed; the objective 

function based on axle weight signal model and sampled signal is set up; the algorithm of PSO is introduced and 

an improved PSO is presented; the simulation and field experiments are conducted to evaluate the performance 

of the proposed method. 

 

II. Axle Weight Signal 
For a static vehicle, the tire force exerted on the ground is equal to the static axle weight (which is regarded 
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as the real axle weight in practice). For a moving vehicle, the tire force exerted on the ground contains the 

dynamic tire forces besides the static axle weight. Consequently, the axle weight signal from the WIM system 

consists of dynamic tire forces and static axle weight. The quarter-car model 
[9] 

is often used to study the 

dynamic tire forces. 

Referencing the approach described in Appendix B of [8], we can simulate the vehicle response to road 

roughness. The axle weight signal consists of dynamic tire forces and static axle weight, and the dynamic tire 

forces vary with road roughness, vehicle speed, vehicle load, suspension stiffness and tire stiffness. The max 

amplitude of the dynamic tire forces can reach 30% of the real axle weight
 [9, 11]

, and the lowest frequency of the 

dynamic tire forces can reach 1.5 Hz
 [9, 11]

. As the width (direction of vehicle driving) of weighing platform is 

limited, it is impossible to acquire any complete cycles of the low frequency dynamic tire forces. For example, 

when the width of weighing platform is 760 mm, the available width is about 490 mm taking account of the 

tire-pavement contact area. When the vehicle runs through the weighing platform at 10 km/h, the valid sampling 

time is 178 ms and only 0.54 multiple cycles for the 3 Hz dynamic tire force.  

If we assume that the dynamic tire forces are the superposition of sine signals 
[12]

, then the axle weight 

signal obtained from the weighing platform can be described as 

1

( ) sin(2 )
n

i i i

i

f t w A f t


     ,                                                         (1) 

where t is the sampling time, w is the static axle weight, n is the number of the dynamic tire forces, iA , if , 

and i  are the amplitude, frequency and initial phase of the i th  dynamic tire force respectively.  

For example, let ( ) 1 0.2sin(2 2 /3) 0.15sin(2 5 /5) 0.1sin(2 10 / 6)f t t t t             is the axle 

weight signal, where three sine functions denote the dynamic tire forces contained in the axle weight signal and 

1 denotes the static axle weight. The dotted lines denote the acquired signals from the different sampling time 

segments in Fig.1. If the average value of the sampled signal is regarded as the estimation of the real axle weight, 

then the measurements corresponding to t1 and t2 sampled signals will be less and more than the real axle 

weight, respectively, and the measurement corresponding to t3 sampled signal will be about equal to the real 

axle weight. So, the acquired measurements will fluctuate above and below the real axle weight depending on 

the magnitudes, frequencies and initial phases of the dynamic tire forces. The dynamic tire forces contained in 

the axle weight signal, especially the incomplete-cycle dynamic tire forces, are the important factor influencing 

the axle weight measurement. 

 
Fig.1 Simulation for the axle weight signal 

 

III. Particle Swarm Optimization 

Inspecting equation (1), if we can acquire the optimal estimations of unknown parameters to make ( )f t and 

the real axle weight signal )(ty  as close as possible, then we can reconstruct the dynamic tire forces and 

separate them from the axle weight signal. The objective function can be described as 

2

1

( ) min ( ( ) ( ))
n

i

G f iT y iT


 X ,                                                       (2) 

Where T is the sampling interval, n  is the sample number of the real axle weight signal )(ty , 

[ , , , 1, 2, , ]T

i i iw A f i n  X  is the parameter vector. To reconstruct the dynamic tire forces, we must get 
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the optimal estimation [ , , , 1, 2, , ]T

i i iw A f i n
    

  X  to minimize ( )G X . The problem of measuring the 

axle weight of moving vehicle is changed into looking for optimal estimations for unknown parameters. 

Particle swarm optimization (PSO) is a global optimization method firstly proposed by J.Kennedy and 

R.C.Eberhart 
[13]

 in 1995. PSO searches the optimal solution by simulating the behavior of bird flock looking for 

food, and has been widely used to solve nonlinear, non-differentiable, multi-modal problems. PSO is initialized 

with a group of random particles, each of which represents a potential solution to a problem. The performance of 

each article is assessed by the fitness function previously constructed. Each particle adjusts its flying according 

to its own flying experience and its companions’ fly experience in solution space. In every generation particle 

swarm, each particle tracks two best values. The first one is the optimal solution found by particle own so far. 

The second one is the optimal solution found by whole particle swarm so far. By iteration research, the optimal 

solution can be obtained. 

Let a population consisting of M particles are flying at definite velocity in a D-dimensional space, the state 

of the ith (1 i M   ) particle at t time can be described as following.  

Position is 1 2( , , , )t t t t T

i i i idx x x x  ，  ,t

id d dx L U  (1 d D  ), 

where Ld and Ud denote the lower limit and upper limit of solution space, respectively.  

Velocity is 1 2( , , , )t T

i i i idv v v v  ，
min, max,,t

id d dv v v  ， 

where vmin and vmax denote the minimum and maximum velocity.  

Individual optimal position is 1 2( , , , )t t t t T

i i i iDp p p p  . 

Global optimal position is
1 2( , , , )t t t t T

g g g gDp p p p  . 

The velocity and position of particle are manipulated at the t+1 time according to the following equation 
1

1 1 2 2( ) ( )t t t t t t

id id id id gd idv v c r p x c r p x      ,                                                (3) 

1 1t t t

id id idx x v   ,                                                                         (4) 

where c1 and c2 are two positive constants (usually c1= c2=2), r1 and r2 are two random numbers in the range [0, 

1]. The equation (3) is used to calculate the particle’s new velocity according to its previous velocity and the 

distances of its current position from its own best position and the group’s best positions. The equation (4) is 

employed to calculate the particle’s new position according to its previous position and its current velocity.  

For improving the performance of PSO, a weight is introduced in practice. The velocity equation of 

standard PSO can be modified as
 [14]

  
1

1 1 2 2( ) ( )t t t t t t

id id id id gd idv v c r p x c r p x      ,                                               (5) 

where   is a weight which affects the proportion of the particle’s previous velocity in current velocity. If the 

valuate of   is large, then the global search performance of PSO is good and the local search performance is 

bad, and vice versa. A good weight will improve the performance of PSO and reduce the iteration times.  

For a good balance between global optimization and local optimization of PSO, an inertia weight
 [15]

 is 

presented as following 

start end
start

max

 
  




   ,                                                              (6) 

where max  is the maximum iteration number,   is the current iteration number, start  and end  are the 

initial weight and final weight, respectively. At beginning, a large weight is good for global optimizing and fast 

search the region containing the optimal solution. The weight becomes small and small with iteration and the 

local searching performance of PSO is gradually improved, the global optimal solution can be obtained at last.  

 

IV. Simulation 
Given the signal shown in fig.1 is the axle weight signal, where 1 denotes the static axle weight and three 

sine functions denote the dynamic tire forces. The sampling interval is 0.001 s and sampling time is 0.2 s. For 

the dynamic tire force 0.2sin(2 2 /3)t  , only 0.4 multi cycles can be acquired in 0.2 sampling time. The 

average value of signal y(t) is regarded as the estimation of the real axle weight. The average value of y(t) is 

1.1131, which means the weighing error is 11.31%.  

With the increasing of number of the unknown parameters, PSO algorithm becomes more complicated. 
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Therefore, it is reasonable to reduce the number of the estimated parameters. In this paper, the spectrum of the 

axle weight signal is employed to estimate the frequency components contained in the axle weight signal. Due 

to the axle weight signal containing incomplete-cycle dynamic tire forces, Fast Fourier Transform (FFT) fails to 

identify all the frequency components of the axle weight signal. Here, multiple signal classification (MUSIC)
 [16]

 

method is presented to estimate the frequencies of the axle weight signal. Compared with FFT, MUSIC can 

identify all the frequency components when the inspected signal contains incomplete-cycle frequency content.  

The frequencies obtained by spectrum analysis are regarded as the frequency components of the dynamic 

tire forces. According to the axle weight signal model (1), the amplitudes and initial phases of the dynamic tire 

forces and the static axle weight can be regarded as the unknown parameters. Combining the sampling signal 

with the axle weight signal model (1), the objective function (2) is constructed. The population size is 100, and 

maximum iteration is 600, and convergence accuracy is 0.00001. The inertia weight (6) is used, and initial 

weight is 0.9, and final weight is 0.4. The objective function is employed as the fitness function to assess the 

particles. Fig.2 shows the process of error convergence. According to the estimations acquired, the axle weight 

signal is reconstructed in Fig.3. Subtracting the reconstructed dynamic tire forces from the sampling signal, the 

static component of axle weight signal can be obtained. The average value of the static component is 0.9954, 

which means the error is 0.46%. Compared with 11.31%, the weighing accuracy is improved greatly. 

   
Fig. 2 process of error convergence                   Fig. 3 simulation of dynamic tire forces separation 

 

V. Field experiments 
Fig. 4 shows the experiment field in this research. The weighing platform is 3.00 m in length and 0.75 m in 

width. The sampling frequency is 10 kHz. The experiment truck passes through the weighing platform at 10 

km/h, 15 km/h and 20km/h, respectively. A low-pass filter is employed to preprocess the sampled signal. Fig. 5 

shows the filtered signal at 10km/h. The first maximum point of the ascent segment denotes tire has entirely 

entered the weighing platform and the first maximum point of the descent segment denotes tire is going to leave 

the weighing platform. The data segment between the two maximum points is selected as the valid signal. The 

dashed lines depict the selection for valid axle weight signal in Fig. 5. In experiments, 18 axle weight signals at 

10km/h, 18 axle weight signals at 15km/h and 18 axle weight signals at 20km/h are used to inspect the 

performance of the proposed method. 

MUSIC method is employed to analyze the frequencies contained in the axle weight signals. Five 

frequencies selected from every axle weight signal are regarded as the frequency components of the dynamic 

tire forces. According to equation (1), the axle weight signal model is constructed. In the axle weight signal 

model, the amplitudes and initial phases of the dynamic tire forces and the static axle weight are the unknown 

parameters. The objective function similar to equation (2) is constructed. The size of particle swarm is 150, and 

the maximum iteration number is 400, and the error tolerance is 0.002. PSO algorithm is used to estimate the 

unknown parameters of the objective function. With the estimations, we can reconstruct the axle weight signal 

and the dynamic tire forces.  

The performances of dynamic tire forces separation are shown in Fig.6, Fig.7 and Fig.8, where axle weight 

signal denotes the valid axle weight signal selected from the sampled signal shown in Fig.5, reconstructed 

signal denotes the reconstructed axle weight signal with the estimations and frequencies, and residual signal 

denotes the residue obtained by subtracting the reconstructed dynamic tire forces from the axle weight signal. 

The average value of the residual signal is regarded as the estimation of the real axle weight. Fig.9 shows the 54 

axle weight estimations. The max measurement errors of axle weight are 5.37%, 4.07% and 13.13% at 10 km/h, 

15 km/h and 20 km/h, respectively.  
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Fig. 4 field experiment site               Fig. 5 filtered sampling signal at 10km/h 

 

      
Fig. 6 estimating axle weight at 10 km/h              Fig. 7 estimating axle weight at 15 km/h 

 

        
 Fig. 8 estimating axle weight at 20 km/h              Fig. 9 fifty-four axle weight estimations 
 

VI. Conclusions 
The dynamic tire forces, especially incomplete-cycle dynamic tire forces, are the main factor that influences 

axle weight measurement of moving vehicles. This paper presents a dynamic tire forces separation method for 

scaling the axle weight of moving vehicles. The proposed method can be described as: 

(1) Analyzing the frequency spectrum of axle weight signal, and selecting several frequencies as the frequency 

components of the dynamic tire forces; 

(2) Constructing the axle weight signal model on the basis of the obtained frequency components, and 

constructing the objective function by combining the axle weight signal model with the sampled axle 

weight signal; 

(3) Employing the improved PSO algorithm to calculate the optimal estimations of the unknown parameters 

contained in the objective function, then reconstructing the dynamic tire forces according to the frequency 

components and the obtained optimal estimations; 

(4) Subtracting the reconstructed dynamic tire forces from the sampled axle weight signal, then acquiring the 

residual signal and calculating the average valued of the residual signal as the estimation of real axle 

Platform 
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weight. 

The simulation and field experiments are conducted to illustrate the performance of the proposed method. 

Referring to ASTM E1318-94
[17]

 standard specification, the measurement accuracy is superior to III class (axle 

load measurement error ±15%) permissible accuracy.  
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